Uncertainty-Aware Robotic World Model Makes Offline Model-Based Reinforcement Learning Work on Real Robots

Jan 1, 2026·
Chenhao Li
Chenhao Li
,
Andreas Krause
,
Marco Hutter
· 0 min read
Uncertainty-Aware Robotic World Model
Abstract
Reinforcement Learning (RL) has achieved impressive results in robotics, yet high-performing pipelines remain highly task-specific, with little reuse of prior data. Offline Model-based RL (MBRL) offers greater data efficiency by training policies entirely from existing datasets, but suffers from compounding errors and distribution shift in long-horizon rollouts. Although existing methods have shown success in controlled simulation benchmarks, robustly applying them to the noisy, biased, and partially observed datasets typical of real-world robotics remains challenging. We present a principled pipeline for making offline MBRL effective on physical robots. Our RWM-U extends autoregressive world models with epistemic uncertainty estimation, enabling temporally consistent multi-step rollouts with uncertainty effectively propagated over long horizons. We combine RWM-U with MOPO-PPO, which adapts uncertainty-penalized policy optimization to the stable, on-policy PPO framework for real-world control. We evaluate our approach on diverse manipulation and locomotion tasks in simulation and on real quadruped and humanoid, training policies entirely from offline datasets. The resulting policies consistently outperform model-free and uncertainty-unaware model-based baselines, and fusing real-world data in model learning further yields robust policies that surpass online model-free baselines trained solely in simulation.
Type
Publication
In arXiv